Proyecto Matemática para la Enseñanza Media MATEM - TEC 2025

Orientaciones para estudiantes - Cálculo

La Escuela de Matemática del Instituto Tecnológico de Costa Rica (TEC) le da la bienvenida al Proyecto Matemática en la Enseñanza Media (MATEM - TEC) durante el curso lectivo 2025. En este documento se le brinda la orientación general para el trabajo del curso Cálculo I. El proyecto MATEM es uno de los esfuerzos de las universidades estatales, en este caso del TEC, de mejorar el vínculo entre la educación secundaria y la educación superior.

Este proyecto tiene como propósito ofrecerle un programa que estimule una serie de aptitudes que contribuyan en su formación, las cuales favorecerán su rendimiento académico en general y le brindará elementos necesarios para enfrentar positivamente el estudio de la Matemática en la Educación Superior.

Evaluación

Cada colegio participante decide la forma en que impartirá el curso a sus estudiantes, así como la forma en que organice la evaluación para los fines internos de la institución. La coordinación de MATEM - TEC será la encargada de realizar la evaluación con miras al reconocimiento del curso en las Universidades miembros del Consejo Nacional de Rectores (CONARE). Cada uno de los exámenes será elaborado y calificado por los coordinadores del Proyecto. La promoción se regirá por los aspectos que se detallan a continuación.

1. Se efectuarán cuatro exámenes parciales.

Parcial	Valor	Fecha
1	25%	Sábado 26 de abril, 8:00 a.m.
2	30%	Sábado 14 de junio, 8:00 a.m.
3	25%	Sábado 13 de setiembre, 8:00 a.m.
4	20%	Sábado 8 de noviembre, 8:00 a.m.

- 2. Para aprobar el curso, el estudiante debe cumplir con las siguientes condiciones:
 - (a) Al redondear al múltiplo de cinco más cercano el promedio ponderado de las calificaciones obtenidas en las pruebas, debe obtener una nota mayor o igual que 70. Ese promedio sería su nota final.
 - (b) Obtener, en el último parcial que realice en este año, una nota mayor o igual a 50.
 - (c) Haber realizado todos exámenes parciales que le corresponden.
- 3. Si al redondear al múltiplo de 5 más cercano el promedio ponderado de las notas obtenidas en el examen se obtiene 60 ó 65, el estudiante tiene derecho a realizar una prueba de reposición. Si en esta prueba obtiene una nota mayor o igual a 70 entonces aprueba el curso con 70.

Además, quienes obtengan una nota final mayor o igual a 70, pero no cumplen las condiciones (b) o (c) del punto 2 tendrán derecho a realizar la prueba de reposición.

Observaciones generales

- 1. Para que un estudiante se pueda inscribir en el curso de Cálculo I del Proyecto MATEM TEC es requisito tener aprobado el curso **Precálculo**.
- 2. El único nexo entre los colegios y la coordinación de MATEM TEC será el profesor responsable del grupo; es decir, los estudiantes y sus encargados deberán tramitar cualquier duda o solicitud a través de sus profesores. Por lo tanto, no se aceptará ningún reclamo o solicitud que se haga por cualquier otra vía.
- 3. Si un estudiante llega después de los primeros 30 minutos de iniciada una evaluación, no se le permitirá realizar el examen. Además, esta situación no será considerada como justificación para optar por el examen extraordinario correspondiente.
- 4. Es responsabilidad del estudiante portar la cédula de identidad, Tarjeta de Identificación de Menores (TIM) o carné del colegio para efectuar las pruebas parciales, en caso de que sean presenciales. De lo contrario no podrá realizar el examen y esta no será justificación para realizar un examen extraordinario del mismo.
- 5. En los exámenes no se permitirá el uso de calculadora programable.
- 6. Los exámenes serán presenciales. Las pruebas deben resolverse individualmente. A quien no lo haga de esa manera se le asignará un 0 como calificación del examen.
- 7. La reposición de exámenes parciales se realizará en las instalaciones del ITCR.
- 8. Los resultados de los exámenes se entregarán al profesor a más tardar diez días hábiles, después de su aplicación. Es responsabilidad del docente retirar las pruebas y hacerlas llegar a los estudiantes dentro de los plazos establecidos.
- 9. Los exámenes de reposición que se aplican de forma presencial, no se entregan después de calificados, pues forman parte de un banco de ítemes.
- 10. Las dudas sobre la corrección de los exámenes se recibirán con un máximo de 3 días naturales posteriores a la fecha en que se le entregara al profesor, siempre y cuando esto no sobrepase las tres semanas posteriores a la aplicación de la prueba.
- 11. Si algún estudiante con debida justificación faltara a un examen, el profesor deberá presentar la solicitud de un examen extraordinario, con un máximo de diez días naturales posteriores a la fecha en que se aplicó el examen al que el estudiante faltó. Los exámenes extraordinarios se realizaran en el ITCR.
 - Las razones que se consideran justificadas para faltar a una prueba de MATEM TEC son las siguientes: la muerte de un pariente hasta de segundo grado, la enfermedad del estudiante u otra situación de fuerza mayor o caso fortuito (cuya valoración estará a cargo de la coordinación del proyecto). Además, se repone una prueba si el estudiante tiene una participación en un evento académico o deportivo el día del examen de MATEM TEC, o bien, que por la ubicación de la sede del evento le sea imposible presentarse a la prueba.
 - En particular, NO se justifican ausencias a un examen por motivos de viaje ni por actividades programadas por la institución como por ejemplo bailes de graduación, convivencias u otros.
- 12. Para el desarrollo de los contenidos, se utilizará como guía el texto Introducción al Cálculo en una Variable de Evelyn Agüero y Juan José Fallas, pero el docente puede complementarlo con el texto que considere pertinente.

Temarios

Los temas a evaluar en cada uno de los exámenes parciales son los que se muestran en la tabla adjunta al final.

Cualquier otro aspecto que no se haya tomado en cuenta en este documento, será sometido a consideración por la coordinación del proyecto MATEM - TEC para su solución.

Atentamente:

MSc. Natalia Rodríguez Coordinadora General

PRIMER PARCIAL

Objetivos	Contenidos	
Determinar el límite de una función a partir de su		
gráfica.	Existencia del límite de una función en un punto dado.	
Justificar la no existencia del límite de una función,		
para un valor dado, a través de representaciones	Cálculo de límites por medio de la gráfica.	
gráficas.		
Aplicar teoremas para el cálculo de límites.	Cálculo de límites utilizando los teoremas.	
Analizar la existencia del límite de una función en	Cálculo de límites de la forma $\frac{0}{0}$, utilizando factorización,	
un valor dado, conociendo el criterio de la función.	racionalización, cambio de variable.	
Aplicar el teorema de intercalación para calcular	Cálculo de límites de funciones que incluyan valor	
límites.	absoluto.	
Calcular límites de funciones algebraicas.	Teorema de intercalación (encaje).	
Calcular límites de funciones trigonométricas.	Límites de funciones trigonométricas.	
Determinar límites infinitos y al infinito conociendo		
la representación gráfica o el criterio de la función.		
Determinar las ecuaciones de las asíntotas	Límites al infinito, asíntotas horizontales.	
horizontales y verticales de la gráfica de una	Límites infinitos, asíntotas verticales.	
función.	Límites de funciones exponenciales y logarítmicas.	
Calcular límites de funciones exponenciales y		
logarítmicas.		
Justificar la continuidad en un punto, gráfica o		
algebraicamente.		
Determinar puntos de discontinuidad para una		
función dada y clasificar la discontinuidad en	Ctiil-1t-	
evitable o inevitable.	Continuidad en un junto.	
Determinar valores de parámetros para que una	Continuidad en un intervalo.	
función sea continua en un punto o en un conjunto.	Continuidad en el dominio máximo.	
Determinar los intervalos de continuidad.	Discontinuidad: evitable o inevitable.	
Utilizar teoremas que justifiquen la continuidad,		
para analizar la continuidad de funciones en su		
máximo dominio o en un subconjunto de este.		
Verificar el cumplimiento de las hipótesis del		
teorema de Bolzano dada una función.		
Aplicar el teorema de Bolzano en la solución de		
problemas.		
Verificar el cumplimiento de las hipótesis del	Teorema de Bolzano.	
teorema del valor intermedio dada una función.	Teorema del valor intermedio.	
Aplicar el teorema del valor intermedio en la		
solución de problemas.		
Interpretar geométricamente los teoremas de		
Bolzano y Valor Intermedio.		

Objetivos	Contenidos
Calcular la derivada de una función en un punto	
dado usando la definición.	
Utilizar la definición formal de derivada para	
calcular la primera derivada de una función f .	La derivada de una función en un punto dado.
Interpretar geométricamente (recta tangente) y	Interpretaciones de la derivada.
como razón de cambio la derivada de una función	La derivada como función.
en un punto.	
Demostrar identidades utilizando el concepto de	
derivada en un punto o las reglas de derivación.	
	Reglas de derivación (suma, resta, multiplicación y
Aplicar las reglas de derivación para calcular la	división).
	Derivadas de funciones algebraicas, trigonométricas,
derivada de una función dada.	logarítmicas, exponenciales y trigonométricas inversas.
	Regla de la cadena.

SEGUNDO PARCIAL

Objetivos	Contenidos
Aplicar la derivación implícita para determinar la derivada de	
funciones definidas de forma implícita.	Derivación implícita. Derivadas de orden superior. Recta tangente y normal.
Aplicar la derivación implícita en la resolución de problemas.	
Calcular derivadas de orden superior.	
Comprobar identidades utilizando derivadas de orden superior.	
Resolver problemas de recta tangente o normal a una curva en	
un punto dado utilizando las reglas de derivación para	
determinar la derivada.	
Utilizar la derivación logarítmica para determinar la derivada de	
funciones dadas.	Derivación logarítmica.
Verificar si una función dada cumple las hipótesis del teorema de	Teorema de Rolle y teorema del Valor Medio.
Rolle.	
Aplicar el teorema de Rolle en la solución de problemas.	
Verificar si una función dada cumple las hipótesis del teorema	
del Valor Medio.	
Aplicar el teorema del Valor Medio en la solución de problemas.	
Interpretar geométricamente los teoremas de Rolle y Valor	
Medio.	
Verificar si se cumplen las condiciones para poder aplicar la regla	Regla de L'Hôpital.
de L'Hôpital.	
Aplicar la regla de L'Hôpital al cálculo de límites.	
Determinar valores máximos y mínimos locales de una función	Valores máximo y mínimo de una función.
utilizando su gráfica.	
Determinar máximos y mínimos locales de una función continua	
en un intervalo cerrado conociendo el criterio de la función.	
Establecer el máximo y el mínimo absoluto de una función en un	
intervalo cerrado.	

Objetivos	Contenidos
	Intervalos de monotonía y concavidad de una
Determinar los intervalos donde una función crece o decrece, usando el signo de la primera derivada. Clasificar los extremos relativos de una función en máximos o mínimos. Aplicar los criterios de la primera y segunda derivada para determinar extremos relativos. Determinar los intervalos en donde una función es cóncava hacia arriba o hacia abajo, conociendo el signo de la segunda derivada. Determinar los puntos de inflexión de una función. Analizar gráficamente las relaciones entre la gráfica de una función, su primera derivada y segunda derivada para establecer la monotonía de la función, su concavidad, extremos y puntos de inflexión. Determinar las asíntotas verticales, horizontales y oblicuas de una función. Realizar un estudio completo de una función para trazar su gráfica.	función. Criterios de la primera y segunda derivada. Extremos relativos: Máximos y mínimos. Valores críticos. Puntos de inflexión. Asíntotas verticales, horizontales y oblicuas. Gráfica de funciones: • Dominio e intersección con los ejes coordenados. • Monotonía y concavidad. • Extremos locales, puntos de inflexión. • Asíntotas verticales, horizontales, oblicuas. • Cuadro de variación. • Trazo de la gráfica.
Resolver problemas utilizando las razones de cambio relacionadas.	Razones de cambio relacionadas

TERCER PARCIAL

Objetivos	Contenidos	
Resolver problemas optimizando la función que lo modela.	Problemas de optimización.	
Resolver ecuaciones diferenciales sencillas (a lo sumo de	Antiderivada de una función.	
segundo orden).	Integral indefinida de una función.	
Calcular integrales indefinidas de una función dada.	Propiedades de la integral indefinida.	
Calcular la integral indefinida de una función usando la	T	
técnica de sustitución.	Integración por sustitución.	
Calcular la integral indefinida de una función usando la	Tutama di in mananta	
técnica por partes.	Integración por partes.	
Calcular la integral indefinida de potencias de funciones	Integración de potencias de funciones	
trigonométricas.	trigonométricas.	
Calcular la integral indefinida de una función usando la	Integración por sustitución trigonométrica.	
técnica de sustitución trigonométrica.		
Calcular la integral indefinida de una función racional		
usando la descomposición por fracciones parciales o	Integración de funciones racionales.	
división polinomial.		
Calcular la integral indefinida de una función usando las	Integración combinando métodos.	
técnicas descritas anteriormente.	integracion combinando metodos.	

CUARTO PARCIAL

Objetivos	Contenidos
	Propiedades de la suma (notación sigma).
	Sumas de Riemann.
Calcular integrales definidas utilizando la definición de	Aproximación de integrales definidas utilizando
sumas de Riemann.	rectángulos y extremos derechos.
Aplicar las propiedades de la integral definida.	Integral definida.
	Propiedades de la integral definida.
Aplicar el teorema fundamental del cálculo para	
determinar la derivada de funciones definidas como una	Teorema Fundamental del Cálculo.
integral.	Teorema de Barrow.
Aplicar el teorema de Barrow para el cálculo de integrales	reofema de Darrow.
definidas.	
	Integración por sustitución.
	Integración por partes.
Calcular la integral definida de una función usando las	Integrales de potencias de funciones
técnicas de integración.	trigonométricas.
	Integración por sustitución trigonométrica.
	Integración de funciones racionales.
Representar el área limitada por dos o más curvas.	
Determinar los puntos de intersección entre dos curvas.	Área entre curvas.
Calcular el área limitada por dos o más curvas utilizando	
integrales definidas.	
Clasificar las integrales impropias según su especie.	Integrales impropias de primera, segunda o tercera especie.
Calcular integrales impropias utilizando su definición	
mediante límites.	
Determinar si las integrales impropias convergen o	especie.
divergen.	