

Contenidos	Habilidades
Función logarítmica	H9: Identificar la función logarítmica como la inversa de la función exponencial. H10: Analizar gráfica y algebraicamente las funciones logarítmicas.

Colaboradores:

Céspedes Gómez Lency Francini Gómez Ramírez María José Guillén Méndez Jean Carlo Nuñez Morales Gustavo Segura Siles Verónica

Resumen de la función logarítmica

Función inversa de la función exponencial

Definición

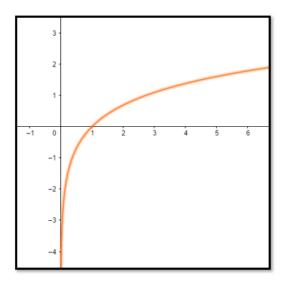
La función exponencial $f(x)=a^x, f:\mathbb{R}\to\mathbb{R}^+$ en donde $a>0, a\neq 0$ y $a\neq 1$ es una función inyectiva y su codominio es igual al ámbito, por lo tanto posee su correspondiente inversa, la cual es la función logarítmica, se denota mediante la expresión: $f(x)=\log_a x, f:\mathbb{R}^+\to\mathbb{R}$ en donde $a>0, a\neq 0$ y $a\neq 1$.

Función logarítmo natural

Definición

Los logarítmos de base e ($\log_e x$) se conocen formalmente como logarítmos naturales, de forma informal se conocen como logarítmos neperianos, esto en honor a Jhon Napier. Para representar a los logarítmos naturales la notación que se utiliza corresponde a: $\ln(x)$.

Nota: La representación gráfica de la función del logarítmo neperiano corresponde a:

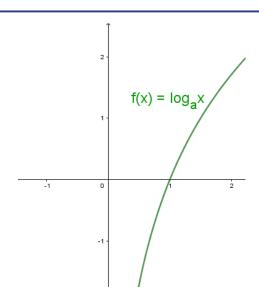


Nota: La función logarítmica se puede clasificar en dos casos

Caso 1: estrictamente creciente

Si a > 1

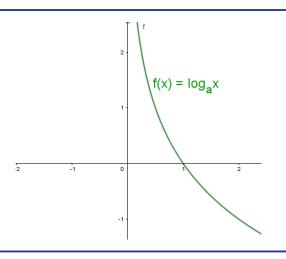
- 1. No interseca el eje y
- 2. Interseca el eje x en (1,0)
- 3. Es estrictamente creciente.
- 4. Es asintótica al eje y.
- 5. Dominio: \mathbb{R}^+
- 6. Ámbito: \mathbb{R}
- 7. Es inyectiva.



Caso 2: estrictamente decreciente

 $\mathrm{Si}\; 0 < a < 1$

- 1. No interseca el eje y
- 2. Interseca el x en (1,0)
- 3. Es estrictamente decreciente.
- 4. Es asintótica al eje y.
- 5. Dominio: \mathbb{R}^+
- 6. Ámbito: \mathbb{R}
- 7. Es inyectiva.

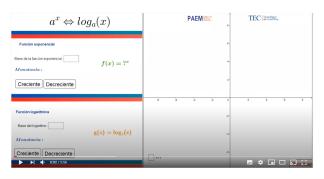


Ejemplos

Ejemplo

1

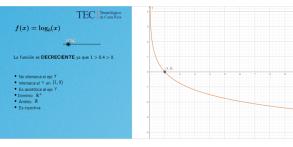
Ver video en el siguiente enlace : https://www.youtube.com/watch?v=BYCE2iGUq64



Ejemplo

2

Ingerese al siguiente enlace para realizar una actividad en Geogebra https://www.geogebra.org/m/wuvfacpu



Nota: Los siguientes criterios de funciones no corresponden a funciones logarítmicas:

Ejemplo

$$f(x) = \log_{\frac{x}{2}}(x)$$

Note que la base corresponde a $\frac{x}{2}$, para que sea una función logarítmica la base no puede poseer variables.

Ejemplo

$$f(x) = \log_{\frac{-1}{2}}(x) \text{ y } g(x) = \log_0(x)$$

Note que las bases corresponde a $\frac{-1}{2}$ y 0, respectivamente, para que sea una función logarítmica la base no puede ser cero ni negativa.

Ejemplo 5

Analice la monotonía de la siguiente función:

$$f(x) = \log_{\frac{7}{2}}(x)$$

Note que la base corresponde a 7/2

$$\Rightarrow \frac{7}{2} > 1$$

 \therefore La función f(x) es creciente.

Ejemplo

Analice la monotonía de la siguiente función:

$$f(x) = \log_{\frac{\sqrt{5}}{3}}(x)$$

6

Note que la base corresponde a $\frac{\sqrt{5}}{3}$

$$\Rightarrow 0 < \frac{\sqrt{5}}{3} < 1$$

 \therefore La función f(x) es decreciente.

Nota: La monotonía también se puede analizar desde su representación gráfica, esta se abarcará en los siguientes ejemplos.

Ejemplo

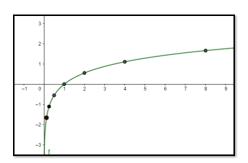
7

Realice el análisis completo de la función que se presenta:

- Criterio: $f(x) = \log_{\frac{7}{2}}(x)$
- Tabulación:

	Х	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8
ſ	У	-1.66	-1.11	-0.55	0	0.56	1.11	1.66

Gráfica:



■ No interseca el eje *y*:

Desde la representación gráfica se puede observar que la función no interseca el eje y. Es asintótica al eje y. De forma algebraica esto se puede deducir pues para $x \le 0$, f(x) no existe.

■ Interseca el eje x en (1,0):

Desde la representación gráfica se puede observar que la función interseca al eje x en el punto (1,0). De forma algebraica esto se puede deducir pues f(1)=0. (Puede observar la representación tabular).

■ Es estrictamente creciente.

Se puede observar tanto de la representación gráfica como del análisis realizado en el **ejemplo** 1. Además, desde la representación tabular se puede observar que conforme los valores de las preimágenes (x) crecen, los valores de sus respectivas imágenes y crecen.

■ Dominio: \mathbb{R}^+

Desde la representación gráfica se puede observar que el dominio de la función corresponde a \mathbb{R}^+

■ Ámbito: ℝ

Desde la representación gráfica se puede observar que el ámbito de la función corresponde a $\mathbb R$

Es inyectiva:

Desde la representación gráfica se puede verificar con la prueba de las líneas verticales.

Ejemplo

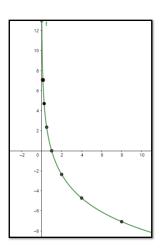
8

Realice el análisis completo de la función que se presenta:

- Criterio: $f(x) = \log_{\frac{\sqrt{5}}{3}}(x)$
- Tabulación:

Х	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8
У	7.08	4.72	2.36	0	-2.36	-4.72	-7.08

■ Gráfica:



■ No interseca el eje *y*:

Desde la representación gráfica se puede observar que la función no interseca el eje y. Es asintótica al eje y. De forma algebraica esto se puede deducir pues para $x \le 0$, f(x) no existe.

■ Interseca el eje x en (1,0):

Desde la representación gráfica se puede observar que la función interseca al eje x en el punto (1,0). De forma algebraica esto se puede deducir pues f(1)=0. (Puede observar la representación tabular).

• Es estrictamente decreciente.

Se puede observar tanto de la representación gráfica como del análisis realizado en el **ejemplo** 2. Además, desde la representación tabular se puede observar que conforme los valores de las preimágenes (x) crecen, los valores de sus respectivas imágenes y decrecen.

■ Dominio: ℝ⁺

Desde la representación gráfica se puede observar que el dominio de la función corresponde a \mathbb{R}^+

■ Ámbito: ℝ

Desde la representación gráfica se puede observar que el ámbito de la función corresponde a $\mathbb R$

Es inyectiva:

Desde la representación gráfica se puede verificar con la prueba de las líneas verticales.

Práctica:

Transformaciones de la función inversa

Indicaciones generales

1. Analice y complete la siguiente tabla. Si la función es logarítmica, indique con un "SI", en caso contrario, con un "NO".

Criterio	Solución	Criterio	Solución	Criterio	Solución	Criterio	Solución
$\log_x(3)$		$\log_e\left(rac{x}{2} ight)$		$\log_2(4x)$		$\log_1(x)$	
$\log_2(4^x)$		$\log_3(9)$		$\log_{\frac{3}{2}}(9x)$		$\ln(2x)$	

2. Clasifique las siguientes funciones logarítmicas según su monotonía (creciente o decreciente). Justifique su respuesta.

Función	Respuesta	Función	Respuesta
$f(x) = 5\log_4(2x)$		$p(x) = \log_{\frac{1}{9}}(9x)$	
$r(x) = \log_{\frac{7}{3}}(x)$		$g(x) = \log_{0,25}\left(\frac{x}{3}\right)$	
$f(x) = \log_{\frac{1}{e}}(x)$		$m(x) = \log_{\sqrt{3}}(3x)$	

3. Complete la tabla que se le presenta a continuación.

Función	Dominio	Ámbito	Intersección en \boldsymbol{y}	Intersección en \boldsymbol{x}
$f(x) = \log_2 x$	[1, 32[
$h(x) = \log_{0,5}(x)$		\mathbb{R}		
$m(x) = \log_{\frac{1}{3}}(x)$	$]9.+\infty[$			
$g(x) = \log_{\sqrt{2}}(x)$		$\mathbb{R}-\{6\}$		

4. Determine la gráfica, la asíntota vertical y las intersecciones con los ejes de las funciones f y g tales que:

a.
$$f(x) = 3\ln(x-2) + 1$$

b.
$$g(x) = -\log_2(1+x) - 3$$

Soluciones

1. Solución

Criterio	Solución	Criterio	Solución	Criterio	Solución	Criterio	Solución
$\log_x(3)$	NO	$\log_e\left(\frac{x}{2}\right)$	SI	$\log_2(4x)$	SI	$\log_1(x)$	NO
$\log_2(4^x)$	NO	$\log_3(9)$	NO	$\log_{\frac{3}{2}}(9x)$	SI	$\ln(2x)$	SI

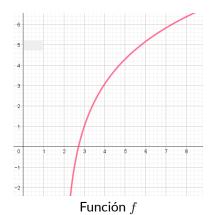
2. Solución

Función	Respuesta	Función	Respuesta
$f(x) = 5\log_4(2x)$	$f(x) = 5 \log_4(2x)$ Creciente		Decreciente
$r(x) = \log_{\frac{7}{3}}(x)$	Creciente	$g(x) = \log_{0,25}\left(\frac{x}{3}\right)$	Decreciente
$f(x) = \log_{\frac{1}{e}}(x)$	Decreciente	$m(x) = \log_{\sqrt{3}}(3x)$	Creciente

3. Solución

Función	Dominio	Ámbito	Intersección en y	Intersección en \boldsymbol{x}
$f(x) = \log_2 x$	[1, 32[[0, 5[No interseca	(1,0)
$h(x) = \log_{0,5}(x)$	\mathbb{R}^+	\mathbb{R}	No interseca	(1,0)
$m(x) = \log_{\frac{1}{3}}(x)$	$]9.+\infty[$	$igg]-\infty,-2[$	No interseca	No interseca
$g(x) = \log_{\sqrt{2}}(x)$	$\mathbb{R}^+ - \{8\}$	$\mathbb{R} - \{6\}$	No interseca	(1,0)

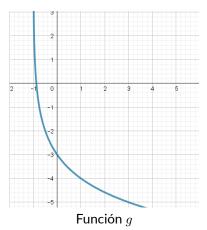
4. Solución



Intersección con eje y: No tiene

Intersección con eje x: $\left(e^{-\frac{1}{3}}+2\;,\;0\right)$

Asíntota vertical: x=2



Intersección con eje y: (0, -3)

Intersección con eje y: $\left(2^{-3}-1,0\right)$

Asíntota vertical: x = -1

Anexos

¿Desea ver material interactivo?

https://www.geogebra.org/m/xpyx2tqm



Ingrese al enlace para conocer más acerca de la inversa de la función lineal y su comportamiento gráficamente.

Referencias bibliográficas

- F Prima. (2015). Matemática 11: hacia la resolución de problemas. (2015) F prima Grupo Editorial.
- Gómez, L. (2016). *Matemática* 11°: *Desarrollando Habilidades*. San José, Costa Rica. Publicaciones Innovadoras en Matemática para Secundaria (PIMAS).
- Ministerio de Educación Pública de Costa Rica. (2012). Programa de estudios. Matemáticas. Costa Rica.
 Obtenido de ENLACE.
- Porras, V., Durán, E. (2015). Matemática 11°. San José, Costa Rica. Publicaciones Porras.
- Santillana. (2016). *Trabajar en: Matemática* 11. Costa Rica. Editorial Santillana.